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State-to-state vibrational energy relaxation (VER) rates of the OH-stretch fundamental to select vibrational
modes of liquid methanol are presented. The rates are calculated via a modified, fluctuating Landau-Teller
(FLT) theory approach, which allow for dynamical vibrational energy level shifts. These rates are then compared
to previously published results from Gulmen and Sibert [J. Phys. Chem. A2004, 108, 2389] for the traditional
Landau-Teller (LT) method as well as results calculated through time-dependent perturbation theory (TD),
which naturally allow for the fluctuation. For the first time, this method is applied to a polyatomic molecular
system, and the FLT theory greatly reduces the discrepancy between the LT and TD results or, at a minimum,
is comparable to the LT approach with very little additional computational cost.

I. Introduction

Nothing is more fundamental to the study of chemistry than
understanding how molecules interact with each other and
learning to manipulate reactions. Both of these topics are
interrogated in vibrational energy relaxation (VER) studies in
the condensed phase. Since VER rates are affected by the
solvent, we are given clues as to the nature of these interactions.1

Likewise, it is possible to prepare a nonequilibrium distribution
of vibrational energy to promote a specific reaction pathway,2

which is limited by the rate of relaxation.
There are several methods by which one can calculate VER

rates: instantaneous normal mode theory,3 centroid molecular
dynamics,4,5 and Landau-Teller (LT) theory.6,7 All of these
methods have been successfully utilized in VER studies and
each have their advantages. Instantaneous normal mode theory
is particularly adept at allowing for an investigation of solute-
solvent interactions which aid the relaxation process; centroid
molecular dynamics allows for the inclusion of quantum

mechanical effects in time correlation functions (TCF). How-
ever, LT theory has been the predominant method to calculate
VER rates. This is due to the simplicity of the implementation
of the method while still possessing a good description of VER
phenomena for a variety of polyatomic molecular systems.8-13

A limitation of the LT method is the requirement that the
vibrational energy levels do not vary in time.

While fixed energy levels are a qualitatively good approxima-
tion for a weakly interacting liquid like neat chloroform11 this
approximation is more problematic for strongly interacting
hydrogen bonded liquids such as liquid methanol13 or HOD in
D2O.10,12In the case of CHCl3 the relaxingν(CH) fundamental
is red-shifted tens of wavenumbers from the gas-phase value
with a comparable spectral width, while theν(OH) fundamental
in these hydrogen bonded liquids red-shift hundreds of wave-
numbers with a breadth to match. This implies the distribution
of molecular environments the chromophore experiences is quite
broad, and for HOD/D2O the ν(OH) frequency shift has a
characteristic 170 fs time scale associated with the movement
of a few molecules and a slower 1.2 ps time scale for collective* Address correspondence to this author. E-mail: sibert@chem.wisc.edu.
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movement.14 Both of these time scales for frequency shifts are
important in VER of HOD/D2O, since they occur on a similar
0.7-0.9 psT1 lifetime.15,16MeOH, by nature of also having an
isolatedν(OH) involved in hydrogen bonding, has a similar VER
lifetime17 and should have similar frequency fluctuation dynam-
ics.

Energy level separation has been shown to effect the VER
rate of MeOH13 and HOD/D2O18 via time-dependent perturba-
tion theory (TD) calculations. Comparison of the LT rates with
ones obtained through TD, which naturally incorporates the
fluctuations in the energy levels, shows occasional disagreement
and sometimes complete disagreement. In the case of the
relaxation rate of theν(OH) fundamental of MeOH to the nearly
degenerateδ(OH) 2ν(CO) combination band, the LT and TD
rates disagree by 3 orders of magnitude.13 The disagreement is
due entirely to the dynamical energy level fluctuations, and
quantitative agreement can be realized for the LT and TD rate
constants when the energy levels are held fixed in the TD
calculation.13

While the TD method is quite useful, it is a more costly
calculation because one has to solve the time-dependent
Schödinger equation. Also the TD method does not lend itself
to the use of a quantum correction factor (QCF) to help bridge
the difference between the classical and quantum TCF.19

Therefore, we will take advantage of the fluctuating Landau-
Teller (FLT) method of Bakker20 and apply that to the
calculation of VER rates of liquid MeOH and show, for the
first time, that this method ameliorates the previous discrepan-
cies between the LT and TD results. In particular, the 3 order
of magnitude difference between theδ(OH) 2ν(CO) combination
band is reduced to less than a factor of 2.

The energy flow pathways and time scales described in our
previous study of the vibrational energy relaxation of theν-
(OH) fundamental13 are not altered appreciably by the new FLT
results presented here. Since that study allowed for a qualita-
tively good description of the experimental results of Iwaki and
Dlott,17 the focus of this paper is on the significant discrepancies
that we found between the LT and TD results for several state-
to-state rates where energy fluctuations were seen to play a
critical role. The purpose of this paper is to show that the theory
of Bakker,20 for including the energy fluctuations in LT, is easy
to implement for realistic systems and provides good results.

In the remainder of this article we will explain how the
fluctuations are introduced into the LT calculation and how they
are applied to the OH stretch relaxation of liquid MeOH. Finally,
we will discuss the results of the FLT method.

II. Method

The traditional LT method has been in the literature for over
two decades,6 and the FLT of Bakker,20 while much younger,
is also available in the literature. For the sake of brevity in this
paper, we will not rederive the methods; we refer the reader to
the work of Oxtoby6 and Bakker20 for details. The TD and LT
calculations for MeOH relaxation have already been presented,
so the authors refer the reader to Gulmen and Sibert13 for the
molecular specifics of this system.

To begin with, LT theory is based on perturbation theory,
and the Hamiltonian

is separated into the relaxing solute vibrational Hamiltonian,
the solvent bath and slow nuclear motion Hamiltonian, and the
interaction between the solute and solvent, respectively. Es-

sentially, the method allows one to calculate the rate of
relaxation between a set of solute vibrational eigenstates{i}
driven by the interactionV which evolves under the time
evolution of the solvent HamiltonianHb with eigenstates{R}.

The rate expression for transition

between statesi and j from Fermi’s Golden Rule can be
manipulated to the more useful, Fourier transformed, spectral
density equation

whereVij(t) ) exp[iHbt/p]Vij exp[-iHbt/p]. The rate constant
is equal to the spectral density evaluated at the average energy
differencekij ) Ĉ(ωij). Thus, the rate depends on the frequency
difference between the two vibrational statesωij and the
interaction TCF traced over the bath states. However, this
expression assumes that the effect of the dynamical solvent
induced vibrational energy level shifts of the relaxing solute
molecule may be neglected.

To include the change in energy of the vibrational state over
time, we follow the prescription of Bakker20 and incorporate
the diagonal interaction term in the energy expressionEiR ) Ei

+ ER + ViR,iR. Inclusion of the diagonal interaction term leads
to the FLT equation

Now, the diagonal elements ofV are included in the evolution
operator; however, we no longer have the same evolution
operators acting on the off-diagonal interaction terms.

With the use of time-dependent perturbation theory again,
we factor the exponential operator

where expo[‚‚‚] is the time-ordered exponential. While this result
is formally exact, there is no guarantee of convergence. After
retention of all terms in the expansion series, the rate of
relaxation becomes

For a simpler notation, we define a modified interaction operator

so that we can recast the expression in the form of eq 3 where
we replaceV with V′. Time symmetrization of the TCF yields

to give the final FLT equationH ) Hs + Hb + V (1)

kij )
2π

p2
∑
R,â

PR|ViR,jâ|2δ(EiR - Ejâ) (2)

Ĉ(ω) ) 1

p2∫-∞

∞
dt eiωt〈Vij(t)Vji(0)〉b (3)

kij ) 1

p2∫-∞

∞
dt eiωij t〈ei(Hb+Vii)t/pVije

-i(Hb+Vjj)t/pVji〉b (4)

e-i(Hb+Vii)t/p ) e-iHbt/p expo[-i(∫0

t
dt′ eiHbt′/pViie

-iHbt′/p)/p] (5)

kij ) 1

p2∫-∞

∞
dt eiωij t〈eo

i∫0
tdt′Vii(t′)/pVij(t)eo

-i∫0
tdt′Vjj(t′)/pVji(0)〉b (6)

V′ij(t) ) eo
i∫0

tdt′Vii(t′)/p [eiHbt/pVije
-iHbt/p]eo

-i∫0
tdt′Vjj(t′)/p (7)

〈V′ij(t)V′ji(0)〉b ) 2
1 + exp(-âpωij)

〈12[V′ij(t), V′ji(0)]+〉b
(8)

kij ) 2

p2(1 + exp(-âpωij))
∫-∞

∞
dt eiωij t〈12[V′ij(t), V′ji(0)]+〉b

(9)
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This expression is still completely quantum mechanical. To
utilize a molecular dynamics simulation, we replaceĈ(ω) with
its classical analogueĈCL(ω). The time ordered exponential is
replaced with an ordinary exponential, and one finds

whereθij(t) ≡ ∫0
t dt′[Vii(t′) - Vjj(t′)]/p is the additional quantity

needed to perform an FLT calculation.
For this work we chose the standard approach of replacing

the time symmetrized quantum TCF with the time symmetrized
classical TCF by assuming that they are approximately equal.
The factor that emerges from the symmetrization is often
referred to as the standard quantum correction factor (QCF).
While there is no exact means by which to replace the quantum
TCF with a classical analogue, there are several suggestions
for how to make the switch and many revolve around a
multiplicative QCFQ(ω), whereĈ(ω) ≈ Q(ω)ĈCL(ω).19 An-
other useful QCF is the Harmonic/Schofield QCFQ(ω) )
eâpω/4(âpω/(1 - exp(-âpω)))1/2 because it was shown to be
particularly effective for transitions that involve multiphonon
relaxation.19 The most fundamental property associated with any
QCF is that it ensures that the detailed balancekij ) kjie-âpωji is
satisfied.

Since the FLT expression is almost identical with the LT
expression, the former expression is readily calculated with a
marginal increase of computational effort due to the evaluation
of the diagonal elements and storage of the integrals.

III. Results and Discussion

Despite the successes8-13 of LT, our goal with this paper is
to demonstrate that the FLT method reliably incorporates the
effect of dynamical fluctuations, like the TD calculations, and
avoids the pitfalls of LT theory. We have chosen to calculate
the state-to-state VER time constants for several states using
TD, LT, and FLT. To designate the different QCF’s, we shall
employ the convention of LT0 for no QCF, LTS for the standard
QCF, and LTHS for the Harmonic/Schofield QCF. The results
are presented in Table 1 in ascending order of their TD VER
lifetimes.

For the purposes of our discussion, since experimental state-
to-state time constants are not available, the TD results will be
our guide for evaluating the methods. The TD method naturally
includes the dynamical energy fluctuations, and it portrays a
qualitatively correct picture of the VER phenomenon being
investigated.13 Since the TD results do not satisfy detailed
balance, the natural results to compare to are those of the LT0

and FLT0. On inspection, the FLT0 results agree more closely
with the TD results in all cases. These results are presented

graphically in Figure 1 where the time constants have been
normalized by the TD results.

The experimental lifetime of theν(OH) fundamental is about
1 ps,17 yet the LT lifetime for this state was 2 orders of
magnitude smaller because theδ(OH) 2ν(CO) state had a time
constant of 0.05 ps. Use of the FLT0 method has considerably
lengthened the VER time constant of this transition to 51.8 ps
and this compares well with the 65.9 ps TD time constant,
especially considering that the LT0 result differed by 3 orders
of magnitude and is so small that it is not able to be seen in
Figure 1. This is consistent with the idea that even though the
average separation between the two states is-5.6 cm-1, during
the lifetime of the excited vibration these states move out of
resonance and couple less strongly. Thus, the LT method that
enforces the constant average energy differenceωij overestimates
the rate, which can be seen for the LT0 and FLT0 spectral
densities for this transition in theω ≈ 0 region of Figure 2.

Another important state in the VER of MeOH is 2δ(OH).
This state is theoretically found to be the predominant energy
accepting mode in the HOD/D2O system.10,12 For strong
hydrogen bonds theν(OH) red shifts while the 2δ(OH) blue
shifts.18 This decrease of separation between the states results
in faster relaxation.13,18 Iwaki and Dlott17 confirmed13 via
experiment and TD calculations that the excitation of different
subensembles of theν(OH) band lead to qualitatively different
dynamics; when the red side of the band was excited, more of
the vibrational energy was transferred to the 2δ(OH) state.

The TD and FLT0 results are in good agreement for this state.
LT0, on the other hand, has a time constant that is more than
double the previous results. Though Figure 2 contains the
spectral density for theδ(OH) 2ν(CO) transition, the main
features of the difference between the LT0 and FLT0 method
hold. Figure 2 shows that not only do you get a suppression of

TABLE 1: Time Constants (in ps) Out of the ν(OH) State Are Presented for Several Methods: TD, LT without a QCF (LT0),
FLT without a QCF (FLT 0), LT with the Harmonic/Schofield QCF (LT HS), FLT with the Standard QCF (FLT S), and FLT with
the Harmonic/Schofield QCF (FLTHS)a

state ω TD LT0 FLT0 LTHS FLTS FLTHS

1 2ν(CO) F(CH3) 249.4 9.4 30.3 15.1 17.2 9.8 8.5
2 2δ(OH) 665.3 13.9 29.8 11.8 7.4 6.1 2.9
3 δ(OH) ν(CO) F(CH3) -98.0 14.9 20.1 15.1 25.4 19.7 19.3
4 δ(OH) 2F(CH3) -191.6 38.0 160 46.3 81.3 79.8 74.8
5 δ(OH) 2ν(CO) -5.6 65.9 0.05 51.8 0.05 52.5 52.5
6 ν(CH) 566.3 156 616 441 184 235 131
7 δs(CH) δa(CH) 415.4 425 807 517 323 293 207

total 3.4 8.0b 3.8 4.1b 2.8 1.8

a The total VER time constant for these states is compared in the last row. The average energyω separating theν(OH) from the presented state
is in wavenumbers.b Without the contribution from stateδ(OH) 2ν(CO).

〈12[V′ij(t), V′ji(0)]+〉b

CL
) 〈[cosθij(t)]Vij(t)Vji(0)〉b

CL (10)

Figure 1. Comparison of the time constants for the TD, LT0, and FLT0

results for the seven states listed in Table 1, as well as the total time
constant, normalized by the TD results. Refer to Table 1 for the state
labels.
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the rate aroundω ≈ 0, but there is also an enhancement when
|ω| > 100 cm-1. Bakker20 observed similar differences in test
calculations where the fluctuations were modeled as independent
Gaussian processes, moreover he was able to modulate the
magnitude of the suppression, enhancement, and crossover point
by altering the spectral width and bath correlation time.

In summary, the TD and FLT0 methods yield similar results
for the ν(OH) relaxation. The biggest improvement of FLT0

over LT0 occurs for theδ(OH) 2ν(CO) mode; the FLT0 method
was able to reliably handle the erroneously fast relaxation seen
with LT. Since there is only a marginal increase in the
computational demand, this method holds promise for treating
systems where the dynamical fluctuations have an important
role to play in the relaxation dynamics.

The utilization of a QCF is an attempt to reproduce quantum
mechanical effects while only calculating the classical TCF.
While there is not a single QCF that approximates all physical
situations with equal accuracy, Skinner and Park19 indicate that
the Harmonic/Schofield QCF is effective for multiphonon
relaxation processes, which we suspect is the most important
mechanism for VER of the MeOHν(OH). However, the VER
time scales calculated are only modestly sensitive to the use of
a QCF since the relaxation tends to be dominated by intramo-
lecular transitions that release a few hundred wavenumbers of
energy into the bath. At room temperature for the 665.3 cm-1

transition fromν(OH) to 2δ(OH), the Harmonic/Schofield QCF
is roughly twice as large as the standard QCF. In comparison,
the ratio of the Harmonic/Schofield to standard QCF in liquid
O2 at 70 K is larger than 8000 to 1 at the only downward
transition frequency of 1552.5 cm-1.21 When all of the states

of MeOH are included in the calculation, the total relaxation
time constant from FLTS is 1.6 ps and that drops to 1.0 ps for
FLTHS. These numbers differ from the total relaxation lifetimes
of Table 1 since those values only include contributions from
the select states shown. Both are in good agreement with the
experimental lifetime of approximately 1 ps.17

While QCF’s become increasingly important when the VER
dynamics is more quantum mechanical (large transition energy
and low temperature), the effect of fluctuations tends to be
equally important for near resonant energy transfer. This is seen
for the relaxation of theν(OH) to theδ(OH) 2ν(CO) state, since
the LT0 time constant was 3 orders of magnitude smaller than
that of the TD or FLT0.

The FLT method displays the advantages of both the LT and
TD methods; FLT is able to describe polyatomic relaxation
processes for realistic systems using classical TCF’s that can
be improved upon with QCF’s and the method also allows for
dynamic energy level shifts which play an important role in
the dynamics.
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Figure 2. The spectral density for theδ(OH) 2ν(CO) state calculated
through the use of Landau-Teller (LT0) theory and the fluctuating
Landau-Teller (FLT0) theory are presented in units of the rate constant
(ps-1) versus frequency difference (cm-1).
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